DEADBEAT RESPONSE IN SECOND ORDER FEEDBACK CONTROL SYSTEMS

WARREN P. KITTERMAN and
KENNETH C. MALLEY

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

Library postgraduate School
U. S. Nan , California

Monterey, Caifornia

DEADBEAT RESPONSE

IN GECOND ORDER
PEELBACR CONTROL SYSTEMS

$$
\begin{aligned}
& * * * * * * \\
& \text { Whaten P. Kitterman } \\
& \text { and } \\
& \text { Kemeth C. Malley }
\end{aligned}
$$

DEADBEAT RESPONSE
IN SECOND ORDER
FEEDBACK CONTROL SYSTEMS

By
Warren P. Kitterman
Major, United States Marine Corps and
Kenneth C. Malley
Lieutenant, United States Nayy

> Submitted in partial fulfillment of the requirements for the degree of
> MASTER OF SCIENCE
> IN
> ELECTRICAL ENGINEERING
> United States Naval Postgraduate Sehool
> Monterey, California
> 8963
nos frechue

$$
1963
$$

Eitriay

U. S. Naval Postgraduate School

Monterey, Califormia
DEADBEAT RESPONSE IN SECOND ORDER FEEDBACK CONTROL SYSTEMS By
Warren P. Kitterman and
Kenneth C. Malley
This work is accepted as fulfilling the thesis requirements for the degree of MASTER OF SCIENCE
IN
ELECTRICAL ENGINEERING
from the
United States Naval Postgraduate School

ABSTRACT

Many methods have been proposed and tested in the past to obtain an optimal response for step inputs to automatic feedback control systems. Most of these methods have led to the use of sophisticated control devices ranging from small analog to large digital computers. Here the possibility of a simplified switching logic combined with an openclosed loop servomechanism is investigated. Deadbeat response to step inputs was the object of this study rather than a time optimal response. Two types of logic were investigated. A time invariant controller was aralyzed, built and tested. The system works on the principle of constant switching times with the output being controlled by an open locp driving voltage which is proportional to the input step size. At the completion of the open loop mode of operation, the system is returned to the normal closed loop mode.

The writers wish to express their appreczation for the assistance and encouragement given them by Dr. John Ward, of the U. S. Naval Postgraduate School. in this investigation.

1
-1
-1

1. Introduction. g
2. Time proportional to command signal. 4
3. Time invariant controiler. 96
4. A design example of the time 89 invarisnt controller.
5. Test of the time invariant controller 21 applied to a doc motor plant.
6. Test of the time invariant controller 40 applied to an amplidyne driven motor.

7
Conclusions. 59

Bibliography 60
Appendix I, "Program Analog" 69

1. Basic Systeni 3
2. Command signal versus switching times. 6
3. Phase plane response of time proportional 7 to command controller. Input equals $\circ 5$ radians.
4. Transient response of time proportional 8 to command controller. Input equals . 5 radians.
5. Phase plone response of time proportional 9 to comand controller. Input equals one racians.
6. Transient response of time proportional 10 to command controller. Input equals one radian.
7. Phase plane response of time proportional 11 to command controller. Input equals 1.5 radians.
8. Transient response of time proportional 02 to command controller. Input equals 0.5 radians.
9. Phase plane response of time proportional 13 to command controller. Input equals two radians.
10. Transient response of time proportional 84 to command controller. Input equais two radians.
11. Phase plane for design example. 20
12. D.C. Servo with a time invariant controlier 22
13. Schematic of transistor amplifier. 24
14. Time invariant and closed loop response of 27DC servo systern with a 1.94 volt input.
15. Tine invariant and closed loop response of 28 DC servo system with a 3.05 volt input.
16. Time invariant and ciosed loop respouse 29
of DC servo system with a 4.0 volt input.
17. Time invaresant and closed 100 pesponse of 30 DC servo system with a 5.0 volt input.
18. Time invarisnt and closed loop responses 31 of DC servo system with a 6.3 volt input.
19. Time invariant and closw zop response of 32 DO servo syst. \therefore. With an 8.4 volt input
20. Tine 2nveriknt and closed lonp response of 33
DC servo systen with an 10.5 volt input.
21. Tine invariant and closed loop response of 34DC servo system with a 1.4 volt input.
22. Amplidyne driven motor servo system with 38
23. Photograph of experimental setup. 40
24. Hysteresis ioop of amplidyne driven sexvo 41 systen.
25. Tine invariant response of amplidune driven 44 motor seryo systen with a four volt input.
26. Closed loop response of amplidyme driven 45motor servo system with a four volt smput.
27. Time invariant response of amplidyne driven 46 motor servo system with a $4 \frac{2}{2}$ volt input.
28. Ghosed loop response of amplidyne dxivex 47 motor sexvo system with a $4 \frac{1}{2}$ volt input.
29. Time invariant response of mpliavme driven 48 motor serpa system with e flve volt input.
30. Closed loop response of amplidyne lix ven 49 motor servo system with a five valt ixpat.
31. Time invaxiant response of amplidye driven 51 motor sexpo system with a $5 \frac{1}{2}$ rolt irpot。
32. Closed loop response of amplidyme arsven 52 motor sexvo systen with a $5 \frac{1}{2}$ volt input.
33. Time invar*ant response of amplidyne ariven 53 servo systen with a six volt input.
34. Closed loop response of amplidyne ariven 54 servo system with a six volt input.
35. Time invariant response of amplidyne driven 55 motor servo systen with three volt input.
36. Closed loop nesponse of amplidyne driven 56 motor pervo system with a three volt input.
37. Time inveriant response to amplidyme ariven 57 motor sexvo systen with a $3 \frac{1}{2}$ volt ingut.
38. Closed loop response of amplidyne driven 58 motor servo system with a $2 \frac{1}{2}$ volt siput.
39. Prograin Analoge 63
40. Subroutine Deriv for Program Analoed. 71
41. Data input for Program Analog. 72
42. Typical output for Program Analog. 73
43. Introduction.

Numerous schemes have been applied to positioning feedback control mechanisms to obtain optimun response for step inputs. Some of the methods used have been (1) dual mode operation ${ }^{1}$ using a relay control computer which approximates the optimal switching line, (2) use of compensation networks to improve relay performance ${ }^{2}$, (3) applicetion of discontinuous damping to a relay servo ${ }^{3}$, (4) conditional switching techniques ${ }^{4}$, and others 5,6. In general, the basic idea behind these various approaches is the desire to obtain deadbeat response in minimum time for a step input.

The time optimization requirement inherently requires a sophisticated controller that can compute the proper switching times accurately. \& questzon

* * * * * * *

${ }^{1}$ K. C. Matthews, R. C. Boe, The application of nonlinear techniques to servomechanisms, Nationsi Electronics Coriference Vol. VIII, pp. 10.21.
${ }^{2}$ D. McDonald, Nonlinear techniques for improving servo performance, National Electronics Corference, Vol. VI, pp. 400-421.

3Harris, McDonald, Thaler, Quasiooptimization of relay servos by use of discontinuous dampinge Applicao tions and Industry, November, 1957.
${ }^{4}$ S. I. Leberman, A bang-bang attitude control system for space vehicles, Aerospace Engineering, Oct. 1962

5I. R. Frederickson, A time-optimal positioning servo, Control Engineering, February, 1963.
${ }^{6}$. J. Thaler, M. P. Pastel, Analysis and design of Nonlinear Feedback Control Systems. Chapter 7.
which might be asked is: "If the requirements for time optimization were dropped, retaining the provision for deadbeat response, would it be possible to design a simple controller for a second order system that would be of proctical value?"

In this paper two approaches to the development of a simple controller for a second order system are investigated. In both cases the system operates in two rodes, linear and nonlinear, which correspond to closed and open loop modes respectively. In the none Inear or open loop mode a driving voltage is applied to the plant for a prescribed amount of time. The voltage is then reversed until the system reaches an output which either equals or approximates the input. At this point the controller returns the system to the innear, closed loop, operation.

As previously stated, in both approaches investio gated, relay switching is caused to occur on a time basis. One of these approaches sets the switching times proportional to the comand signal while the other holds the switching times constant while setting the driving voltage. The latter scheme is suggested by the principle of superposition。

The system of Fig. 1 is the basic block diagram for both approaches. The step input commands are represented by R, the system output position by C and the output of the open loov controller by V. The plont is second order
and has the transfer function:
(i)

$$
\frac{K / \pi}{S(S+1 / \tau)}
$$

The systeil is to be controlled by an open loop controller which functions on command signals only. Any load perturbations or other similar disturbances within the loop will not affect the controller.

$$
\text { Fig, } 1 \text { - Basic system }
$$

The assumptions made for the theoretical investigations are (1) the system is linear, (2) the system is second order, (3) command signals are to be steps only and (4) new command are not to be given until the previous comand has been completely executed.
2. Tine proportional to command signal.

With the output voltage of an open loop controller a constant in magnitude, there is a specific relation ship for the time to reverse the polarity of the driving voltage and the time to return the system to normal linear operation in order to force deadbeat response. By using an approximation to this relationship, a theore tical controller was derived. The systern incorporating this controller was then investigated on the CDC digital computer.

For purposes of this investigation, the proposed systera is to function as follows: At some time, t_{0}, a step command signal, $\pm R$, is applied to the system. Application of the command signal causes the loop to be opened and a voltage, $\pm V$, to be applied to the plant for a period of time, t_{S}. At time t_{S} the polarity of the signal is reversed for a period of time, ${ }_{r}$. The total time of nonlinear operation, t_{t}, is defined by:

$$
\begin{equation*}
t_{t}=t_{s}+t_{r} \tag{2}
\end{equation*}
$$

At time t_{t} the controller closes the loop returning the plant to standard closed loop operation. If at time t_{t}, the plant output has arrived at the desired position commanded by the input, then true deadbeat response has been achieved.

A digital program wes written to compute the times t_{s} and t_{t} for various values of inputs. The system parameters, K and T as well as the applied voltage, $\pm V$,
-2
\qquad
were held constant. For the system under evaluation the following values were arbitrarily selected:
$K / T=I, I / T=5$ and $V=100$. Each combiaation of t_{s} and t_{t} that results in deadbeat response specifies a command signal R. Thus, from the program datas a plot of t_{S} and t_{t} versus R was made for $0 \leq R \leq \pi$ radians as shown in Fig. 2. From these data, t_{S} and t_{t} can be approximated by a straight line as show in the figure. These straight ine approximations of t_{s} and t_{t} car be evaluated in point slope form as:
(3) $\quad t_{s}=.075|e|+0.05$
(4) $\quad t_{t}=.092|R|+0.105$

Since t_{s} and t_{t} are independent of the sign of the input, the magnitude of R is specified in the above equations.

It is immediately obvious from Figo 2 that the straight line approximation is extremely poor for small inputs, but this problem can be eliminated if the system is held in closed loop for small inputs. Thus。 In this system, the minimum step size for open loop operation would be about . 25 radians.

Using the switching times determined from equations (3) and (4), a program was written and appended to "Program

Fig. 6. Transiont response of time proportional to command controller. Input equals one radian.

RADIANS
1的。
….... 920 913 8

1	
$2 \mathrm{Can}+1952$	
5	

Analog" ${ }^{7}$ to study the performance of a system utilizing this type controller. Four runs were made with inputs of $05,1,1.5$ and 2 radians. The resulting phase planes and time response characteristics as plotted by the computer are shown in Figures 3 to 10. By inspection of Fig. 2 it is possible to predetermine whether switching will occur early or late. For example, if the input is .5 radians, Fig. 2 predicts that both switching times, t_{s} and $t_{r o}$ will be late and the system will overshoot. This is verified in Figures 3 and 4. If the input is 1.5 radians, it would be predicted that switching would be eariy. This is verified in Figures 7 and 8.

This approach does offer some improvement in time-toosteadyostate over normal licear operation but it is limited to a comparatively small range of inputs. A controller that could vary the times of switching as specified by equations (3) and (4) would not be simple to construct, which is contrary to one of the main design objectives as set forth in section 8 .

$$
\text { k } k * * * * *
$$

7"Program Analog" was written by Dro Jo Re Ward of the U. S. Naval Postgraduate School. The program as used is shown in Appendix I.
3. Time invariant controller.

Assume that a given Iinear second order system is controlled in such a manner as to provide a deadbeat response for a step input. If the output of the inear system is proportional to a step input. then by the principle of superposition ${ }^{8}$, the output is doubled when the input is doubled. Furthermore, if the acceleration time, $t_{S^{s}}$ and the deceleration time $t_{r^{9}}$ are known for a specified step command, then it will be possible to obtain deadbeat response for all step commands if the switching times are held constant while the driving voltage is varied in proportion to the step command.

To determine the appropriate switching times, it is first noted that if the controller voltage is V, then the system output will, if the initial conditions are zero, be:
(5) $\quad C(S)=\frac{K V / T}{S^{2}(S+1 / T)}$

The step voltage $+V$ is to be appiled for a finite time, $t_{S \%}$ and the step voltage $-V$ is applied for the finite time, t_{r}. If at $t_{s}+t_{x}$ the output of the system is identically equal to the input, and the output rate is zero, then system response is indeed deadbeat. It is

* * * * * *

BM. E. Van Valkenburg, Network Analysis, Prenticeo $^{\text {E }}$ Hall. Ince, pp. 79-80.
now necessary to find the required conditions for such deadbeat response.

The inverse transform of equation (5) is:
(6) $\quad C\left(t_{5}\right)=K V\left(T \epsilon^{-t_{2}}+t_{5}-T\right)$

To obtain the system rate at time ${ }^{t}$ it $1 s$ only necessary to take the derivative of equation (6). Thus.

$$
\begin{equation*}
\dot{C}\left(t_{s}\right)=K V\left(b-\epsilon^{-t_{s} / t}\right) \tag{7}
\end{equation*}
$$

The reversed voltage is now applied for a period tree and considering the initial conditions that exist at time $t_{s}{ }^{9}$ it follows that the equations for system position and rate for $t_{S} \& t$ \& t_{t} are:
(8) $C(s)=-\frac{V / K / T}{S^{2}(S+1 / r)}+\frac{C\left(t_{s}\right)}{(S+1 / t)}+\frac{C\left(t_{s}\right)}{S(S+1 / p)}+\frac{C\left(t_{s}\right) / T}{S(5+1 / R)}$
and:
(9) $\dot{C}(s)=-\frac{V K / T}{S(S+1 / T)}+\frac{\dot{C}(t s)}{(S+1 / T)}$
or:
$(10) C\left(t_{\psi}\right)=V K\left(t_{s}-t_{\psi}+T\left[1-t^{-t_{0} / t}\left(2-b^{-t_{s} / t_{t}}\right)\right]\right)$
and:
(11) $\dot{C}\left(t_{t}\right)=V K\left[-1+E^{-t / t}\left(2=E^{-t / v}\right)\right]$

For deadbeat response the system rater \dot{C}. must equal zero at time t_{t}. Therefore, by setting equation (B1) to zero, the exact relationship between the
acceleration time, t_{s} and deceleration time, $t_{x^{2}}$ is obtained, namely:
(12) $\epsilon^{-t / \pi}=2-\epsilon^{-t_{5} / T}$

To obtain the deceleration time required for any acceleration time. It is only necessary to take the natural logarithm of both sides of equation (12);

$$
\text { (12a) } \quad t_{r}=T \ln \left(2-\varepsilon^{-t_{1} / i}\right)
$$

To obtain the system output for deadbeat response in terms of t_{s} and $t_{r o}$ equation (12) is substituted into equation (10) which yields:

$$
(13) \quad C\left(t_{t}\right)=V K\left(t_{s}-t_{r}\right)
$$

Finally, the system output in terms of the acceleration time only can be found by substituting equation (92a) into (13) to give:
(14) $C\left(t_{t}\right)=V K\left[t_{s}-T \ln \left(2-6^{-t / / 2}\right)\right]$

Thus by using a controller voltage proportions l to R_{8} and by choosing t_{s} and t_{r} as calculated from equations (12a) and (14), deadbeat response can be achieved for any step input provided that the plant is adequately described by a (linear) second order transfer function.
4. A design example of the time invariant controller.

A logical sequence of manipulations to determine the proper switch tong times for a given Linear second order system can be easily obtained from equations (12a) and (14). For purposes of illustration, assume that the system has the 0 gLOwing characteristics:

$$
\begin{aligned}
& \mathrm{K}=10 \quad \text { Maximum ontrit acestre }=10 \\
& T=1.0 \text { Saturation will occur if KV is greater } \\
& \text { then } 100 .
\end{aligned}
$$

Using equation (14) with time constants given above and selecting a maximum applied controller voltage of 10 (to wold the saturation nonolinearity) a trans cendeatal equation for the acceleration time $t_{\text {so }}$ is obtained:

$$
(14) \quad 10=100\left[t_{5}-\ln _{0}\left(2=t^{-t_{5}}\right)\right]
$$

A value of t_{s} equal to 368 seconds will satisfy the equation. It is then necessary to find the deceleration time t_{x}. TO 20 this, substitue time ts into equation (ia) (12a) $t_{r}=\ln \left(2-\varepsilon^{2036}\right)=0.268$ ser.

The total the of open loop operation is then . 636 seconds. Using the above constants, the system equations were solved on the digital computer only one input was given to the system as other inputs would provide the same type of output changed by a constant only. Fig. 18 shows the computed phase plane response of the system.

Fig. 11. Phase plane for dooign examplo.

[^0]KITTERMAN MALLEY THESTS RLN
5. Test of the time invariant controller applied to a docomotor plant.

The controller analyzed in sections 3 and 4 above. is here investigated experimentally in relation to a DC motor plant which wes predominanty second order and Inear up to the saturgtion 2imit of the driving amplifler. Runs were made with yarious step inputs in both the timewnyariant and standard closed loop modes.

The followtig operations by the open 1000 controller are requined to tost the theory:

1) At time to a step input is commanded. The loop is opened and an oper $200 p$ dxiving voltage is applied to the planto
2) At time t_{s} the ariwing poltage is reversed.
3) At time to the dryving voltage is removed from the plant, the loop is dosed and the system returned to its standard elosed loop mode of operation. The operations required were camoled out by a timing device consisting of a rariable speed D. Co motor geared to a shaft containing three "make and break" switches. The time of contact ol these switches rela tive to eack other was wardable, that is their relative angiular positians on the shat corde be varded. The switches were connected to relay cixcults which accomplished the $\dot{G} e s i r e d ~ s w i t c h i x g . ~ T h u s, ~ r e l a y ~ s w i t c h i n g ~ t i m e s ~$ could be varied sy adusting the speed of the D. Go motor or by adfusting the relative anguiar position of
the "make and break" contacts.
Fig. i2 shows a block diagram of the experimental D. C. servo used for testing. Whex a step command is recelved, relay one switches to its nomally open position. This is time to. Relay two switches to its nomally oper position at time to to reverse the open loop driving voltage. A third relay, not shown in the figure, is used to return relays one and two to their normally closed positions at time to

The transfer function of the open 100 p system was evaluated as:
(17)

$$
\frac{2.94 / 18}{5(5+1 / 8)}
$$

where the gein is 2.94 and the system time constant is 1.8 seconds. The system output position, c_{8} was obtained by integrating the output of a tachometer gesaed to the driving motor. As a result. the system output was
evaluated in polts and consequeatly, the command and output signals could be comparea in volts mather than radians. Further investigation of the open Ioop system revealed that an open loop command signad of about eight volts world cause saturation in the transistor power amplifier. A schenatle of this amplifez is shown in Fig. 13.

For the purpose of steady state accuracy, of primary importance in positioming systems the closed loop gain was set at 29.4 or ten times greater than the open loop gain.

To simplify the construction of the controller, it was decided to obtain switching times such that a one廿olt input, R_{0} would cause o one polt dryving voltage, V. In other words. the constant of proportionality derived In equation (84) was made equal to one. This reans that in equation $(94), \mathrm{V}=C_{8}$ and t_{S} car be evaluated directly from that equation to yrel the desixed value.

$$
\begin{align*}
& C\left(t_{t}\right)=V K\left[t_{s}-\theta^{v} A_{n}\left(R_{2}-t^{-t_{s} h_{s}}\right)\right] \tag{104}\\
& \frac{2}{2.964}=E_{8}-1.8 t_{01}\left(2-\epsilon^{-t / 2)}\right. \\
& \text { ts }=98 \mathrm{sec} .
\end{align*}
$$

By using the palue of t_{s} equal to . 98 sece in equation (19a), tis found to be .54 sec. The relay switching times wexe then set sccordyngy.

An input of three volts whe used to check out the

Fig．13．Schematic oi trensistor amplifier．
switching true comprter sowe. The response was not deadbeato the shitching thes were then adyusted to obtain deadbeat response to the three voIt input. The actual time of volugge reversal was 1.15 seco compared to the computad 98 sec. The total time of operation Was 1.55 sec. oompred to the computed thme of 9.52 sec . These differemees ware probably due primarily to the fact that the system was ompy quas 13mear and seond order.

A six chamel Errah recomier wras used to record the closed $100 p$ command swan. the opers loop command signad, the systw output and the system rate. Runs
 Foltse A standard siosed loop response to the same step commends was also made tor comparison purposes. Figures 44 through en shot the respouses obtained. Each page contains tumeraverant system mesponse followed fmediately by z struard olssed $200 p$ response to the
 runs.

Not要

$$
\begin{aligned}
& \text { sigrali。 }
\end{aligned}
$$

VOLTS

$-N$
Open loop command signel

System rate

Fig. 14. Time invariant and closed loop response of DC-servo system with a 1.94 volt input.

TIME- $0 \begin{array}{llllllllllll} & 0 & 1 & 2 & 4 & 5 & 0 & 1 & 2 & 3 & 4 & 5 \\ \text { VOLTS }\end{array}$

-
\square
Open looo comana signal

System rate

Fig. 15. Time invariant and closed loop response of DC servo system with a 3.05 volt input.

System rato

Fig. 16. Time invariant and closed loup response of DC servo system with a 4.0 volt input.

VOLTS

Closed loop comaand signal

> 6
> 4
> 2
> 4

Open loop comwand signal

Systen output position
10

$$
1 \exists \sum E=\because \text {, } x=\because \quad \text { System rats }
$$

Fig. 17. Time invariant and closed loop response of $D C$ servo system with a 5.0 volt input.

VOLTS
6

Closed loop comand signal

6

Open loop command signal

System rato

Fig. 17. Time inveriant and closed loop response of DC servo system with a 5.0 volt imput.

wystem ontnut reition

$$
-.10
$$

Syster rate

Fig. 18. T'ime invuriont and cloeed loop response of DC servo systom with a 6.3 volt input。

$$
\underbrace{20}_{\text {Open loop cownand signal }}
$$

System output nosition

うystem rate

Fig. 20. Time invirient and closed lo presponse of Da servo system with an 0.5 volt invut.

Closed loop command signal
\qquad

The controller reversed the input to the motor at the proper time but the reversal is not indicated on this trace. It was not possible to record the input to the motor (amplifier output) showing the reversal of driving voltage, because of grounding problems. A ground at the motor input would cause one or both of the power transistons to burn out in the power amplio fier. The third trace is the system output and the fourth trace, the system rate. The time t_{s} the time at which the polardty or sign of V is reversed, is readily observed on the Iast trace, system rate, as there is a definite change in slope at that time. Time on all tho traces reads from left to right with t_{o} signified by the oommencement of the open loop coumand signal and t_{t} by the end of this command and the start of the closed 100 p command signal.

It was mentinned earlier that an output signal of eight volts would saturate the power amplifiex. It follows, then. that if $C \geq 4$, the amplefier will saturate when the dxiving voltage is reversed. The reason for this is that at the time of voltage xeversal a back electronotive force has built up in the motor Which approaches the driving voltage. This bagh emf has the effect of increasing current requiremeat fron the amplifier wher the driving voltage is reversed. Therefore, at the time of switching, the systen should tend toward saturation if the signal voltage 2 g greater $=35-$
than four volts. This saturation caused a reduction in the braking or deceleration power available From this it follows that the system output would tend to overshoot. These effects may be seen in Figuces 06, 17, and 18. By analyzing the system rates at time t_{S} and t_{t} for these figures it can be demonstrated that saturation does occur in the time increment $t_{s} \& t_{t} t_{t}$ At time $t_{s,}$ for the three figures mentioned gbove, the system rate increased proportionately with the comand signal as called for by the theory. Yet at time to the system rate was larger than predicted meaniag that the system did not decelerate sufficientiy which resulted in overshoot at time t_{t}. For examole, the system rates at time t_{s} and t_{t} for the five volt input (Fig. 17) are 6. 1 and .95 volts per second respectively. For an input of 6.2 volts (Fig. 18) one would predict by the principle of superposition that the rates would be increased by the factor $6.2 / 5.0$ or would be 7.5 and 1.1 volts per second. Actually, Fig, 98 shows the rates to be 7.5 axd 1.5 volts per second. The rate at time t_{s} agrees with the theory but at time tot the rate differs by 44 yolts per second. This difference can be accounted for by the saturation that occurs when the voltage is reversed.

When the system input exceeds eight voltsoseturation is predicted at t_{0} and at t_{s}. One would expect, thereo fore, that the system output would never peach the
desired point at time t_{t} or in other words, the system will have undershoot at time t_{t}. The reason for this phenomenon is that the driving voltage is never large enough to provide the response called for by the theoretical equations. The results of this type of saturation are shown in Figures 19 and 20. Fig。 20 clearly demonstrates the effect on system output.

Fig. 21 shows the response of the system with a small input, 1.4 vodts. Here the system output。 by time t_{t}, does not reach the desired value. The primary cause for this is that the small driving voltage is of insufficient magnitude to overcome the stiction and friction in the system.

From these experimental tests it can be seen that the time invariant switching scheme does provide deadbeat response over a range of inputs. If deadbeat response is desired in a positioning feedback control system, the method of time invariant switching can provide this in a given time increment over a designed range of inputs.
6. Test of the time invariant controlier applied to an amplidyne driven motor.

The time invariant controller has been shown to work over a range of inputs with a quasi linear. second order system. One might now inquixe as to its usefulness with a system that is quite nonilnesp in that it exhibits hysteresis, excessive stictiono and saturao tion. To investigate this, a system was constructed that incorporated an amplidyne, a $\frac{1}{4} \mathrm{HP}$ doc shmnt wound motor, and a permanent magnet, D.C.generator. The output of the generator, or tachometer. was integrated to simulate the system output. As in the previous experiment the system output and input was in volts. Fig. 22 depicts the system as set up in the 2aboratory with the relays performing the same functions as outo lined in section 5. Fig. 23 is a picture of the system as it appeared in the laboratory.

Fig. 22 Amplidyne driven motor servo system with time invariant controller.

A plot of the voltage input versus the tachometer voltage output for the open loop system appears on Fig. 24. Notice that at least two volts are required to start the system in motion and that at about six volts the system starts to go into saturation. The hysteresis loop is rather broad which could provide difficulty in system performance. From open and closed loop tests of the system, without the time inpariant switching, the open loop transfer function was determined to be approximately:

$$
\begin{equation*}
\frac{110}{5(5+7)} \tag{17}
\end{equation*}
$$

Depending on the test being conducted, the system gain varied from 100 to 195 and the reciprocal time constant from 6.9 to 7.5 inverse seconds.

Using the values of gain and the time constant from equation (7) and having a unity relationship between the open loop output and open loop drivirg vcitage t_{s} was determined from equation (14) to be about 033 seconds. Then $t_{\text {ro }}$ from equation (12a), was eraluated as .27 seconds. The system was rum with an input step of four volts. The response was not deadbeat so the times of switching were adjusted to yield a near deado beat response. The timing circuit controis wera not fine enough to permit precise adjustments of the switching times. The adjusted times were then measured and found to be .38 second for time t_{S} and .09 second for t_{r}.

$$
=39=
$$

Fig. 24. Hysteresis loop of ampliayno driven servo system.

The acceleration time was .05 second longer than the computed value and the deceleration time was . 98 second shorter than the computed value. This shorter decelera* tion time is probably due to the large friction that was present in the motorn

A Brush recorder was used to record the values of the closed loop command signal, the open loop command signal, the system output, the system rate, and the voltage applied to the motor. These recordings are shown in Figures 25 through 38. Following each timew invariant run to a given input, the system was run in the normal closed loop mode with the same quantities being recorded. A figure of the closed loop recording follows each time invariant figure. The maximum overo shoot and timeotoosteadymstate was evaluated for all runs and a comparison of the times to steady state was made. The results of this evaluation are tabulated in Table II.

Note:

1. $M_{p t}$: Ratio of maximum output to desixed output.
2. Time to steady state operation taken to be when system is within . 1 volts of ccmmaxd signal.
3. Δt is defined as the difference between loop and closed loop operation.

From the recordings it can be seen that the range from four to five volts the response was almost deadc beat. (Figures 25 through 30.) When the input voltage was in excess of five volts the system output started to overshoot the desired value at time t_{t} As in

$$
-43=
$$

VOLTS
4
2
0
Closed loop command signal

VOLTS
4
2
0
Open loop command signal

VOLTS

VOLTS
-20
-0
-
-20

System rate

VOLTS

-50

Input to dec motor

Fig. 25. Time invariant response of amplidyne driven motor servo system with a four volt input.

```
Time->0 0.1 0.2 .3 .4 . .5
1.0 secoñs
```

VOLTS

> Closed loop command signal

VOLTS

VOLTS

System output
VOLTS

10

System rate
VOLTS

$--50$

Input to d-c motor

Fig. 26. Closed loop response of amplidyne driven motor servo system with a four volt input.

Timo-0 0.1 . 2 . 4 . 5 . 1.0 seconds

```
VOLTS
    6
    4
    2
        0________
                        Closed loop command signal
```

VOLTS

Open loop command signal
VOLTS
6
4
2
0
System output
VOLTS
20
-20
System rate

VOLTS
50

Input to $\mathrm{d}-\mathrm{c}$ motor

Fig. 27. Time invariant response of amplidyno driven notor servo system with-a $4 \frac{1}{2}$ volt input.

Time -0.1 . $0.3^{-4.5} \quad 1.0$ seconds

Closod loop comrand signal
VOLTS
6
4
2 Open loop command signal

VOLTS
System output

VOLTS
20
0

System rate

VOLTS

-50

Input to d-c motor
Fig. 28. Closed loop response of amplidyne driven motor servo system with a $4 \frac{1}{2}$ volt input.

Tine- 00.10 .20 .40 .5 . 0.0 seconds
VOLTS
6
4

2
0
Closed loop command signal

VOLTS

VOLTS

VOLTS

20
-20

System rate
VOLTS

-50

Input to $\mathrm{d}-\mathrm{c}$ motor

Fig. 29. Time invariant response of amplidyne driven motor servo system with a five volt input.
$\begin{array}{llllll}\text { Time } \rightarrow 0 & .1 & .2 & .3 & .4\end{array}$

VOLTS
6
4
2
-0
Closed loop command signal

VOLTS

0
4

2
-0
Copen lonp comand signal
VULIS
૪

-VULIS'

Systom rato

VOLTS

Input to $\mathrm{d}-\mathrm{c}$ notor

Fig. 30. Closed loop response of amplidme driven motor servo systerwith a five volr input.
section 5 with the D 。 Co servo, this is due to satura. tion of the amplidyne when the driving voltage is reversed. This type of response is shown in Figures 31 through 34.

For step inputs less than four volts system performance deteriorated rapidly. This was due almost entirely to the excessive stiction and friction in the system. It was found that the system did not respond to a command less than two volts or about 30% of the operating range. The system response to inputs of 3 and 3.5 volts are shown in Figures 35 through 38.

As might be expected, the use of an open-loop controller with a farofromoideal plant does not lead to acceptable performance.

Tino- $0.10 .2 .30 .4-5 \quad 1.0$ secoñ s
VOITS
6
4
2

Closed loop command signal

VOLTS

Opon loop command signal

VOLTS

Time -ie $0 \quad .2 \quad .2 \quad .3 \quad .4 \quad .5$ I. 1.0 seconde
VOLTS
6
4
2
-0

> Closed loop command signal

VCITS
6
4
2
-Open loop comand signal
VOLTS

- 8

6

4

2

0
System output
VOLTS

> System rate

VOLTS

Input to d-c motor

Fig. 32. Closed loop response of amplidyne driven motor servo syotem-with-a $5 \frac{1}{2}$ volt input.

VOLTS

VOLTS
8
6
4
2
System output

VOLTS
50

$--50$

System rate
VOLTS
100

-100

Input to $\mathrm{d}-\mathrm{c}$ motor

Fig. 33. Time invariant response of amplidyne driven servo systein with a-six volt-input.

Timen-0.1 .2 . 5 . 4 . 1.0 seconde VOLTS
6
4
2
-0
Closed loop command signal

VOLIS

6
4

2

Open loop command signal
VOLTS
8
6
4
2
0

System output

VCLTS

System rate
VOLTS

Input to d-c motor

Fig. 34. Closed loop response of amplidyne driven servo system with a six volt input.

Time $=0.10 .2 .3 \quad 4$.
VOLTS

Closed loop command signal

VOLTS

Open loop command signal

VOLTS
3

2
1

System output

VOLTS

5
0
\cdots

System rate

VOLTS

20

Input to d-c motor

VOLTS

$$
\begin{aligned}
& 3 \\
& 2 \\
& 1 \\
& 0
\end{aligned}
$$

VOLTS

3
2

1
0
Open loop cormand signal

VOLTS

3
2
1
0
System output
VOLTS
5
0
-5

System rato

VOLTS

$$
\begin{aligned}
& 20 \text { hinhhinh hhhhhhthun } \\
& \text { Input to } d-c \text { cotor }
\end{aligned}
$$

Fig. 36. Closed loop response of amplidyne driven motor servo system with.a three volt input.

VOLTS
3
2
1
0
Closed loop command signal

VOLTS

VCLTS
3
2
1
0
System output
VOLTS

-10

System rate

VOLIS
50

-50

Input to d-c motor

Fig. 37. Time invariant response to amplidyne driven motor servo system with a $3 \frac{1}{2}$ volt input.

VCLTS

Closed loop command signal
VOLTS
3

2

1
0
Open loop command signal
VOITS

3
System out put
VOLTS

10
-10

System rato

VOLTS

-50

Input to $d-c$ motor

Fig. 33. Closed loop response of amplidyne driven motor servo system with a $3 \frac{1}{2}$ volt input.
7. Conclusions.

In the search for a simple scheme to provide deadbeat response for step inputs to a second order system, attention was concentrated on an openoclosed loop controller. For the system investigated, switching time in the open loop mode were fixed and the output from the controller to the plant was proportional to the magnitude of the step input.

Using this scheme, any Iinear system can be controlled with deadbeat response (Principle of supero position). To control the second order plant considered in this study only one switching point is required. The experimental program was intended to suggest the shortcomings of this approach when applied to a relay system with its non-linearities and higher order dynamics.

The first real system studied Was relatively free from any nonolinearities and provided near deadbeat response over approximately 50% of the desigred operating range. A system with rather pronounced nonolinearities was also chosen for study and provided near deadbeat response over less than 20% of the desired operating range. It is concluded, then, that if deadbeat or near deadbeat response is desired, the time invariant controller investigated in this thesis can be used to force this response in a linear system. With a non-linear system. the controller is of Iittle use. In any event, the time of response to any size step requires the same interval of time for open loop operation.

\section*{$x-\frac{1}{4}-10$
 0

F- $=$

$1-2$

以下"=
$1 \operatorname{man}^{2}$

1．K．C．Matthews，R。C．Boe，The appileation of nonlinear techniques to servomechanisms．
National Electronics Conference Vol．VIII．PP． $10-21$.
2．D．McDonald，Noninear techniques for improwing servo performance．National Electronics Confexence． Vol．VI，PP．4000421．

3．Harris，MoDonald，Thaler，Quasiooptimization of relay servos by use of discontinuous damping． Applications and Industry，November． 4957.

4．S．I．Leberman，A bangobang attitude control system for space vehicles，Aerospace Engireering． October． 8962.

5．T．R．Frederickson，A timeooptimal positioniag servo，Control Engineering，Februsiry， 9963.

6．G．Jo Thaler，M．Po Pastel，Analysis and design of Nonlinear Feedback Control Systems．Crapter ${ }^{\text {P }}$

7．＂Program Analog＂was written by Dro J。Ro Ward of the U．So Naval Postgraduate School．The program as used is shown in Appendix I。

8．M．E．Van Vaikenburg，Network Analysis，Preatico

9．D．D．Mcoracken，A guide in FORTRAN programingo John Wiley \＆Sons．Inco，New York，Londons 9961.

APPENDIX I

PROGRAM ANALOG
A Control Data Corporation CDC 9604 digital
computer is avallable at the U. So Naval Postgryauate School. Dr. J. R. Ward of the Postgraduate School. Department of Electrical Engineeving, hac written a FORTRAN ${ }^{8}$ language program for this computer which simulates an analog computer. The progron is referred to as Program Analog. It retaing all the versatility of the analog computer and provides both a graphical and numerical output. With this progren many of the problems of magnitude and time scaling as well as the difficulties in simulating nonlingantiles assoctated with an analog computer are avoided. The prograns which is reproduced in Figures 39 through 49° wses a modifled Runge-Kutta integration scheme.

This program was used for the investigations carried out in section 2 . Fig. 39 is the main part of the program. It consists of the necessary instructions for the analog sinulation of a given problem and does not require any changes as the problem is varied. This part of the program may be thought of as the analog computer. Fig. 40 is the FORTRAN simulation of the

9D. D. MCCracken. A guide in FORTRAN programming. John Wiley \& Sons, Inc. New York. Landori noti.
problem board. This part of the program must be changed in the same maner as one world change the wiring on a problem baard. Fig. 48 , the data dnputg sets the initial conditwons potentiometer settings, problem time and providea means by which vazwous output data can be obterned. A typical numerical output for a Program Analog problem appears ln Figo 42 a Figures 3 through 10 in the body of the these are typical outputs poz the program.

```
..JOB MALLEY ( 10 NINLTES SHOULE DO)
    PROGRAM ANALCG
    CALL EXEC
    ENO
    SUBROUTINE EXEC
        l
    1C(J)=0.
    DO 1CO1 j=1,100
1 0 0 1
    XO(J)= 0.
    DO 1002 J=1,1C
    ITITLE(J) = &H
1002
    JTITLE (J) = &H
1003. KTITLE(J) = &H
    NRC = O
    200 FORMAT(1HI)
    201 FORMAT(/)
    203 FORMAT (///)
    REAC 102, (ITITLE(J),J=1,5)
    102 FORMAT(10A8)
    READ 101,N,ITEST
    101 FORMAT(I2,A8)
    ICHECK = 8H EOUATIC 2,3,2
    IF(ICHECK - ITEST) 2,3,2
    204 FORMAT(18H DATA FORMAT ERRCR)
    STOP }
    3 READ 101,NR, ITEST
    ICHECK = 8H RUNS
    IF(ICHECK - ITEST)4,6,4
    4 ICHECK = 8H RUN
    IF(ICHECK - ITEST) 7,6,7
    6 IF(NR - 9) 8,8,7
    PRINT 204
    STOP }
    8 READ 101,NT,ITEST
    ICHECKE= 8H TITLEEC, 10,9,10
    IF(NT -9)\1, 11,10
    10 PRINT 204
    STOP }
    11 DO 12 I=1,NT
    REAC 102,(JTITLE(J),J=1,10)
    12 PRINT 205,(JTITLE(J),J=1,10)
    IF(NR - 1)10,13,14
    1 3
    GOTC 155
20
205
207 FORMAT (5X,20F1
    FORNAT(5X, I1,21H RUNS ARE CALLEC FOR.)
    NRC =NRC + !
    NEAD 102,ITEST 
    ICHECK1 = 8HYFRL CCE
    IF(ICHECK1 - ITEST)16,18,16
        IFIICHECK2
        STOP }
    0-0
        00 19 J=1,100
    19C(J)=0
    REAC 101;NC, ITESt
```


21

ICHECK $=8$
IFIICHECK
PRIN 204

22

STOP 5
UO $24, J=1, N C$
$R E A C$ N 103 ，IT

```
ITEEFT; 21,22,21
```


OGK24 K $=10^{5}$
$C(I T K)=C T$

ざペロ

FORMAT（12HRLA NUMBER，I 1，II
$\begin{array}{lll}K \\ 0 & = \\ 27 & \mathrm{~J}=1,99\end{array}$
DC $(C$（J） $126,27,2 t$
PRINT $209, j, C i J)$
$\begin{aligned} 26 & \text { PRINT } 209, J, C(J) \\ 209 & \text { FORHAT } 10 \times 2 H C(1,4 H)=, E 12.5)\end{aligned}$
27 KONTINUE
CONTINUE
IF（K） $1027,1026,1027$
1026
240
1027
FRRNAT 50 SKLNCNE
PRINT 202
READ 102,
ICHECK $=8 H Z E R C$
ICHEK2 $=8 H H C L$
ICHEK $=8 H H C L C$
IFIICHECKI－ITES
GO
IF
IF

P

TC 35
ICHECK
ICHECK
－ITESTI） 3 I， 35,31
PRIP
STOP
T 204

ICHECK $=3 H$ IC CARD
IFISHECK－ITESTI $66,37,36$
PRINT， $2 C 4$
30
STOP 7

37 38

IF（NI） $38,40,28$
DO $39, J=1$, NI
READ 103, IT
DC $39 K=1,5$
ITK
XO
PRINT
K
O
39
40
210
$k=$ OO 42
！F $\times 2$
PRINT

```
    104 FCRMAT (1OF8.4)
    46 READ 102, ITEST
            \(\begin{aligned} \text { ICHECK } & =8 \text { HCCNPUTE } \\ \text { ICHECK2 } & =8 \text { HFOLC STE }\end{aligned}\)
            ICHECK \(=8\) BREAS STE
IF ICHECK - ITSST) \(48,47,48\)
INDICT \(=1\)
    47
                            READ \(101, K P\), ITEST
                            ICHECK EK BH IS GRDE
IF ICHECK - ITESTISO,59,50
IF ICHECK2 - ITST) \(49,59,49\)
    48 IF (ICHECK2 - ITEST) \(49,59,49\)
49 IF ICHECK3 - ITEST) \(50,51,50\)
    50 PRINT 204
    STOP \({ }^{9}=0\)
INDIC7 \(=0\)
    READ \(104,(C(1), J=1 C 3,1 C 9)\)
    52 PRINT 204
    STOP 10
    53 IF (C(104))54,52,54
    \(54 \mathrm{NDT}=3\)
    \(\operatorname{IF}(C(105)-T F) 55,59,55\)
    55 IF \((C(106)) 56,52,56\)
    56 NDT \(=2\)
        \(\operatorname{IF}(\bar{C}(107)-T F) 57,59,57\)
    57 IF (C (108) ) 58,52,58
    \(58 \mathrm{NDT}=3\)
        IF(C(109)-TF)52,59,52
    59 PRINT 212,TG,TF
212 FORMAT(3)H THE TIMING DATA ARE AS FOLLOWS, //
```



```
    60 PRINT \(213, \mathrm{KP}\)
213 FORMAT \(\left(\begin{array}{l}5 X, 35 H T H E ~ S T E P ~ S I Z E ~ I S ~ C O M P U T E D, ~ B A S E D ~ O N, ~ / ~\end{array}\right.\)
```



```
    \(00,1060 \mathrm{~J}=1, \wedge\)
1060
    \(A(J)=A P=T F-T C\)
    C(104) \(=A(1 C O) * 1 . C E-05\)
\(G 0 Y 063\)
    61 NDTT \(=\) NDT*2
    DO \(62 \mathrm{~K}=1, \mathrm{NDTT,2}\)
    62 PRINT \(214, C(1 C 3+K), C(102+K), C(104+K)\)
214 FORMAT \(5 \mathrm{X}, 15 \mathrm{HSTEPSIZE}=, \mathrm{ET}=5,10 \mathrm{~F}\) FROM \(\mathrm{T}=, \mathrm{E} 11.5,8 \mathrm{HTOT} \mathrm{T}=\),
    1 Ell.5)
    63 PRINT 202
    REAC 102 , ITEST
    ICHECK \(=8 H H C L D P R I\)
    IF(ICHECK - ITEST)64,74,64
    64
1064 READ 101 , NP, ITEST
    IF (ICHECK - ITEST)65,1064,65
    ICHECK \(=8 \mathrm{H}\) VARIABL
    IF(ICHECK - ITEST)65,66,65
    65
    PRINT 204
    STOP I 1
    66 IF (NP) \(67,74,67\)
    \(\begin{array}{ll}67 \\ 68 \text { REAN }-10) 68,68,65 \\ 68 & 104 \mathrm{IF}(K), K=1, N P)\end{array}\)
1104 FORMAT (10I4)
    READ 101,NT, ITEST
    ICHECK \(=8\) TITLE C
IF ICHECK -1 IEST)65,69,65
    69 IF \((N T) 70,73,70\)
    70 IF 7 NT - 4\() 71,71,65\)
    \(710072 \mathrm{I}=1, \mathrm{NT}\)
    \(K=(I-1) * 10+1\)
    \(K P 9=K+9\)
```

72 READ 102, (KTITLE(J), J=K,KP9)
73 REAC 101 , INCPR, ITEST
ICHECK = SH INCREME
IF(ICHECK - ITEST)65,74,65
74 READ 102, ITEST
ICHECK $=8$ HHCLD GRA
IF ICHECK - ITEST) $75,81,75$
ICHECK
$=$
IFREAD GRA
75
76 PRIN
PRINT 20
STOP 12
77 READ 101 , NG, ITEST
ICHECK = 8H CRAPHS
78 IF (NG) $79,81,79$
79 IF (NG - 5) $80,80,76$
80 NG2 $=N G * 2$
READ $1104,(I C(K), K=1, N G 2)$
READ 1O1, INCGR, ITEST
ICHECK $=8$ INCREME
215
PRINT 215
215 FORMAT 17 H PRINT SUMMARY---, 1$)$
IF (NP) $83,82,83$
82 PRINT 216
216 FORMAT(5X, 11FNO PRINTCUT)
GOTO 84 , INCPR
217 FRRMAT $55 \times, 12,29 H$ INCREMENTS BETWEEN PRINTOUTS, 1
217 FORMAT(5x, 12,29 IN INCREMENTS BETWEEN PRINTOUTS, PRINT 218, (IP (J), J=1, NP)
218 FORMAT(10X,2トX(,13,1H))
DO $1084 \mathrm{~J}=1, \mathrm{NP}$
IF(IP(J)) $1084,1 \mathrm{C} 85,1 \mathrm{C} 4$
1084
CONTINUE
1085 GRINT 1217
1217 FORNAT ($1,5 \times, 22 H$ X(0) REPPESENTS TIME)
84 PRINT 202
219 FORMAT 17 H GRAPH SUMMARY---, 1)
IF(NG)86,85, ع6
85 PRINT 220
220 FORMAT(5X, 9HNO GRAPHS)
GOTO 2089
GO TO 2089 INCGR
221 FCRMAT $5 \times$, I2,26H INCREMENTS BETWEEN POINTS, ,) PRINT 241 , IG(1), IG(2)
241 FORMAT (1OX, 1 BHGRAPH A IS $\mathrm{X}(, 13,8 \mathrm{H}) \mathrm{VS}$. X(, I3, 1H)) IF (NG - 2) 87, 108?,1087
1087 PRINT 242,IG(3),IG(4)
242 FORMAT (10X, $13 H G R A P H$ B IS $X(13,8 H)$ VS (X(I, I3,1H)) IFING - 3) $87,10 \varepsilon 8,1088$
1088 PRINT 243 . IG(5), IC(6)
243 FORMAT (10X, IF(NG - 4)87.1089,1089
1089 PRINT 244,IG(7),IG(8)

IF (NG - 5)87,10SO,1090

87 DO $2087 J=1,1 G 2$
IF(IG(J))2087,2088,2087
2087
GO TO 2089
2088 PRINT 1217
2089
223 FORMAT(5X,1OFRUN NUMBER,12.1//)

```
        IF(NP)88,90,88
    8 IF(NT)89,90,89
    &9 PRINT 224,(KTITLE(J),J=1,KPQ)
    224 FORMAT (2X,9(AB,4X),AB)
    PRINT 201
    T = TO
    DT = C(104)
    OO (j) J=1,N
    M(J) = xo 
    NUMPTS = 0
    301 IF(NP) 302,312,302
    302 IF(NOPTS)303,302,303
    303 IF(XMCDF(NOPTS,SO*INCPR)) 304,306,3
        IF(XMCDF(NOPTS,10*INCPR) )305,30?,305
        IF(XMODF(NOPTS, INCPR),312,308:312
    PRINT 200
    PRINT 201
    CALLEDERIV(T:X,XDOT,C)
    LINES = LINES + I
    DO,311 J=1,NP
    IF(IP(J))310,305,310
    3 0 9
    MR(J) =
    310 IPJ= IP(J)
    PR(J) = X(IPJ)
    311 CONTINUE
    PRINT 225,(PR(J),J=1,NP)
    225 FORMAT(10(1X,E11,5))
    312 IF(NG)313,31&,313
    314 IF(XNODF(NOPTS,INCPR))1315,13{4,1315
    1315 CALL DERIV(T,X,ADOT,C)
    1314 DO 317 J=1,NG2
        IF(IG(J))316,315,316
    315
    GR(J) = T17
    316 IGJ=IG(J)
    GR(J) = X(IGJ)
    317 CONTINUE
    NUMPTS = NUMPTS + +
    Y1(NUMPTS)}=\mp@code{GR(1
    Y2(NUPPTS)=GR(%
    Y3(NUMPTS) =GR(5)
    M 年(NUMPTS)}=\mp@code{GR(6)
    X4(NUNPTS) = GR(8
    Y5(NUMPTS)}=\mp@code{GR(9)
    318 NOPTS = NOPTS +
    IF(LINES - 250)11319,1318,1318
    1318 PRINT 1216
    1216 FORMAT (/124H STOP AT 250 PRINT LINES)
    1319 GO TO 341.E+04)320,319,319
    319 PRINT 226
    226 FORMAT (/119H STCP AT T = 10,000)
    320 GONTOP347-1COOO, 322,321,321
    320 IFRNOP 227-
    227 FORMAT(//26H STCP AT 10,C00 INCREMENTS)
    GO TO 341 (0) 324,323,32
    IF(NUMPTS - SOO)324,323, ミ23
    PRINT }22
    FCRMAT(/125H STCP AT }900\mathrm{ GRAPH PCINTS)
    GO TO 341
    324 IF(T - TF) 32t,325,325
```


CALL GRAPH2
INUMP TS, X5,Y5, 8 , MODCURV, LABEL, ITITLE,SFX, SFY, 1 NINOFFX, NINEFFY, LAEELNC, MODE)
356 PRINT 200
IF (NRC - NR) $300,357,357$
RETURN
END

- SUBRCUTINE RKUTTA (N,T,DT,X,C)

DIMENSION $X(150), \operatorname{AK}(4,10 C), X C O T(100), X C(100), C T(4), C(150)$
$C T(T)=0.0$
$C T(1)=0.0$
$C T(2)=0.5$
$C T(3)=0.5$
$\operatorname{CT}(3)=0.5$
$\operatorname{CT}(4)=1.0$
$004 \quad I=1,4$
$\begin{array}{cc}T C \\ O O 2 \\ 0 & = \\ J=1, ~ C T(I) * O T\end{array}$
2 XC(J) $=\times X(J)+C T(I) \neq A K(I-1, J)$
$\begin{array}{ll}\text { CALL } & \text { DERIV } \\ \text { DO } 4 & J=1, N\end{array}$
$4 \mathrm{AK}\left(\frac{I}{3}, J\right)=\operatorname{DT} * \operatorname{XDCT}(J)$
$3 \times(J)=X(J)+(\operatorname{AK}(1, J)+2 . \approx \operatorname{AK}(2, J)+2 \cdot \operatorname{Ar} \operatorname{AK}(3, J)+A K(4, J)) \approx 0.1666666667$ RETURN
END
SUBROUTINE RKUTTA2 ($N, T, C T, X, A, C$)
THIS SUEROUTINE IS EASEE ON THE METHOD CESCRIEEC IN CONN. CF
 THE STER SIZE ACCORDINGLY THE ACTUAL RUNGE-KUTTA INTEGRATION IS PERFCRNED BY SURRCUTINE RKUTTA, WHICH IS AVAILABLE IN THE USNPGS COMPUTINS CENTER THE ARGUEMENTS ARE, TMXINUN N = G \quad. $N=$ NUMBER CF (FIRST OREER) EQUATIONS MAXIMUN N = G
$T=$ TIME AT START CF INTEGRATIDN STED (UPDATEC BY THIS
$D T=$ SUERDUTINE AFTER THE CONPLEYION CF EACH STEP) .
$X(I)=$ THE N DEPENDENT VARIABLES (ALSO UPDATED).
$A(I)=$ THE SPECIFIED ALLOWABLE ERROR PER UNIT TINE FOR EACH OF THE DEPENCENT VARIAELES. A(100) IS USEC TC ENTER THE TCTAL TIME. NOTE THAT IF NECESSARY DT IS REDUCED FRCM TFE VALUE STATED IN THE ARGLEMENY UNTIL THE SPECIFIED ACCURACY HAS BEEN $\triangle C H I E V E C$.
OIMENSICN $X(150), X S(100), \times 22(100), X 2(100), A(1 C 0), C(150)$
$T S=T$
$H=2.0 \mathrm{KOT}$
$001=I=1, N$
$1 \times 22(I)=x(I)$
CALL RKUTTA (N,TS,H, $\mathrm{N} 22, \mathrm{C}$)
$H=D T$
2 CALL RKUTTA ($\mathrm{N}, \mathrm{TS}, \mathrm{H}, \mathrm{X} 2, \mathrm{C}$)
$3 \times S(I)=1 \times 2(I)$
TS $=T S+H^{+}$
CALL RKUTTA (N,TS,H,XS,C)
CALL RKUTT
$U 2=0.03$
$D O 1^{6}=I=1, N$
$E 21_{0}$
$=22(I)-X S(I)) * 0.06666666667$

THIS CONDITICN PREVENTS RCUNC-OFF ERROR FROM TAKING CCNTROL.
$U=E 21 R /(A(I) * 6.0 * H)$
IF $(U-U 2) 6,6,5$
5
$\times S(I)=X S(I)-E 21$
IF (U2-1.O) $11,7,7$
$8 \mathrm{IF}=\mathrm{H}=A(100) * 1.0 E-09$
THIS SETS THE MININUM STEP SIZE TO 1.OE-09 TIMES THE TCTAL TIME.
$9 \begin{aligned} & \text { GO TC } 16 \\ & \text { DO } 10 \text { I } \\ & \end{aligned}$

Fig. 39. Cont.
$\times 22(I)=\times 2(1)$
$T S=T$
$\mathrm{H}_{\mathrm{GO}}=0.5 \% \mathrm{H}$
THIS RECYCLES THE INTEGRATION IF THE TRUNCATION ERRCR IS EXCESSIVE.

11 IF (U2 -0.0 . 0 ミ1) $12,13,13$

GO TO 14
13 DT = SQRTF(SGRTF (0.5/U2)) \%
14 IF (CT - A 15 DT $=A(100)=0.001) 16,16,15$
$15 \mathrm{DT}=A(100) * C \cdot C C 1$
THIS SETS THE MAXIMUM STEP SIZE TO 1.0E-03 TIMES THE TOTAL TIME.

DO $17 \mathrm{I}=1, \mathrm{~N}$
17 THIS UPDATES T AND X(I). CT IS LPDATED BY STATENENT 8,12,13 OR 15.
RETURN
END
FUNC TION RELAY (R,DZONE,V)
3 RE(ABSF(R) - CZCNE) $3,3,4$
RETURN $=0.0$
4 RELAY $=\operatorname{SIGNF}(V, R)$
RET
SUBRCUTINE DERIV (TY, X, XDCT, C
DIMENSION X(150), XDOT(100), C(150)

```
Fig. 40. Subroutine Deriv for Frogram Analog.
```

COMMENTS
nnก
SUBROUTINE FCR CPEN - CLCSED CYCLE SYSTEM USING A TIMING CKT WHERE AND THE RELAY DUTPUT IS A CONSTANT IN THE NONLINEAR REGION $R=C(1)$
$E R R O R=R-X(1)$

600 SIGN $=\triangle B S F(E R R C R) / E R R O R$
$S W 1=1.0$
$S W 2=0.0$
601 IR ORIVE $=C(6) *$ SWI
GOTD 604
GO TO 604
DRIVE
$=$
$-C(6) * S W I$
IF (ABSF(XDCT (1)) - .05) 603, 603, 604
603
$S W 1=0.0$
$S W 2=1: 0$
$T M E=8(0$
604 POWER $=C(3) *$ ERROR * SW2 + DRIVE * SW1
\times DOT $(1)=x(2)$
XDOT (2) = POWER * C(4) - X(2) * C(5)
$\begin{aligned} T S & =0.075 * A B S F(R)+0.05 \\ T O & =0.092 * A B S F(R)+0.105\end{aligned}$
$x(3)=S W 1$
$x(4)=$ SW 2
$x(5)=$ DRIVE
$\times(6)=$ POWER
$\times(101)=E R R C R$
X(102) $=-\operatorname{XDCT}(1)$
RETURN
C
C
C
C

OMMENTS

THIS IS BLUE DECK ONE

END
END

Fig. 41. Data input for Program Analog.

KIIILKMAN MALLEY IHESIS
02 EQUATIONS
04 RUNS
OTETITE GARDSOP SERVE SYSTEM WITH SWITCHING=F(TIME, INPLT) ZERO COEFFS CARES

06 COEFF. CARCS	
10.5	
	0.25
3	40.00
4	1.0
5	5.0
6	100.0
ZERO ICS	
00 IC CARDS	
READ	TIME data

OOMPUTE STEP SIZE
COM
COMPUTE STEP SILE -1 IS ORDER OF SMALLEST VARIABLE READ PRINT CATA
07 VARIABLES PRINTED

20 INCREMENTS BETWEEN PRINTS
READ GRAPH DATA
02 GRAPHS 102101
01 INCREMENTS BETWEEN POINTS
HOLD COEFFS
1
ZERO ICS
$O O$ IC CARDS
HOLD TIME DATA
HOLD STEP SIZE
HOLD PRINT DATA
HOLD GRAPH DATA
HOLD COEFFS
01 COEFF. CARDS
ZERO ICS
00 IC CARCS
HOLD TIME DATA
HOLD STEP SIZE
HOLD PRINT CATA
HOLD GRAPH DATA
HOLD COEFFS
01 COEFF. CARCS
ZERO ICS
00 IC CARDS
HOLD TIME DATA
HOLD STEP SIZE
HOLD PRINT DATA
HOLD GRAPH DATA

Fie. 42. Typical outnut for Program Analog.

OPEN-CLOSED LOOP SERVO SYSTEM WITH SWITCHING = F(TIME, INPUT) 4 RUNS ARE CALLED FOR.

RUN NUMBER 1

THE NON-ZERO DATA COEFFICIENTS ARE AS FOLLOWS

THE NON-ZERO INITITAL CONDITIONS ARE AS FOLLOWS NONE

THE TIMING DATA ARE AS FOLLDAS
INITIAL TIME $=.00000 E+30$
FINAL TIME $=-15000 E+31$
THE STEP SIZE IS COMPUTEJ, BASED ON
SMALLEST VARIABLE OF ORDER 1.OE-1

PRINT SUMMARY---
5 INCREMENTS BETWEEN PRINTOUTS
the variables printed are

x1
x
$\times 1$
x
$\times 1$
$\times 1$

* $x(0)$ REPRESENTS TIME

GRAPH SUMMARY---
NO GRAPHS
kittermav malley thesis RUN NUMBER 1

TIME	SYSTEM OUTPUT		SWITCH	SWITCH THO	DRIVE
$\begin{aligned} & 90000 \mathrm{E}+00 \\ & 3000 \mathrm{E}-03 \\ & 2810 \mathrm{E}-01 \\ & 7810 \mathrm{E}-01 \\ & 2810 \mathrm{E}=01 \\ & 7810 \mathrm{E}-01 \\ & 72810 \mathrm{E}-0 \\ & 37810 \mathrm{E}-01 \\ & 10281 \mathrm{E}+00 \\ & 1788 \mathrm{E}+00 \end{aligned}$	$\quad .00000 \mathrm{E}+00$ $-.43178 \mathrm{E}-04$ $-.80324 \mathrm{E}-02$ $=.36938 \mathrm{E}-01$ $-.85432 \mathrm{E}-01$ $=.15210 \mathrm{E}+00$ $=.23563 \mathrm{E}+00$ $=.33479 \mathrm{E}+00$ $=$.	$\begin{array}{r} .00000 \mathrm{E}+00 \\ -: 92784 \mathrm{E}-01 \\ -: 12408 \mathrm{E}+01 \\ -: 25763 \mathrm{E}+01 \\ -.38538 \mathrm{E}+01 \\ -.50205 \mathrm{E}+01 \\ -.51029 \mathrm{E}+01 \\ -.71370 \mathrm{E}+01 \\ -80386 \mathrm{E}+01 \\ -.89229 \mathrm{E}+01 \end{array}$	$.00000 E+00$ $-10000 E+01$ $: 10000 \mathrm{E}+01$ $.10000 \mathrm{E}+0$ $.10000 E+01$ - $10000 E+0$ - $10000 E+0$ $.10000 \mathrm{E}+01$ $.10000 E+0$	$.10000 E+01$ $.00000 E+00$ $.00000 E+00$ $.00000 \mathrm{E} \div 00$ $.00000 E \div 00$.00000 E j0 $.00000 \mathrm{E}+00$ $.00000 E+00$ $.00000 E+00$	
$\begin{aligned} & 13281 E+00 \\ & 14500 \mathrm{E}+00 \\ & 14500 \mathrm{E}+00 \\ & 14500 \mathrm{E}+00 \\ & 14500 \mathrm{E}+00 \\ & 14502 \mathrm{E}+00 \\ & 14579 \mathrm{E}+00 \\ & 15715 \mathrm{E}+00 \\ & 17215 \mathrm{E}+00 \\ & 18715 \mathrm{E}+00 \end{aligned}$	$-.71525 \mathrm{E}+00$ $-.83727 \mathrm{E}+00$ $-.83730 \mathrm{E}+00$ $-.83730 \mathrm{E}+00$ $-.83731 \mathrm{E}+00$ $-.83755 \mathrm{E}+00$ $-.84538 \mathrm{E}+00$ $-.95485 \mathrm{E}+00$ $-.10790 \mathrm{E}+01$ $-.11805 \mathrm{E}+01$	-. $97348 \mathrm{E}+01$ $-.10313 \mathrm{E}+02$ $-.10314 \mathrm{E}+02$ $-.10314 \mathrm{E}+02$ $-.10313 \mathrm{E}+02$ $-.10311 \mathrm{E}+02$ $-.10231 \mathrm{E}+02$ $-.90469 \mathrm{E}+01$ $-.75148 \mathrm{E}+01$ $-.60282 \mathrm{E}+01$	$.10000 E+01$ - $10000 \mathrm{E}+0$ $.10000 E+01$ $.00000 \mathrm{E}+00$ $. .00000 \mathrm{E}+00$ $.00000 \mathrm{E} \div 00$.00000 Er 00 .00000 E -00 $.00000 E+00$	$\begin{array}{rl} .00000 E+00 \\ : 00000 E+00 \\ : 00000 E+000 \\ 1 & 10000 E+01 \\ -10000 E+01 \\ 10000 E+01 \\ 100000 E+01 \\ 1 & 100000+01 \\ -10000 E+01 \\ .10000 E+01 \end{array}$	
$\begin{aligned} & -20215 \mathrm{E}+00 \\ & -21715 \mathrm{E}+00 \\ & -23215 \mathrm{E}+00 \\ & \cdot 24715 \mathrm{E}+00 \\ & -26215 \mathrm{E}+00 \\ & -27715 \mathrm{E}+00 \\ & .29215 \mathrm{E}+00 \\ & .30715 \mathrm{E}+00 \\ & .32215 \mathrm{E}+00 \\ & .33715 \mathrm{E}+00 \end{aligned}$		$\begin{aligned} & -.45969 E+01 \\ & -: 32291 E+01 \\ & -.19322 E+01 \\ & -.71232 E+00 \\ & : 42563 E+00 \\ & : 14777 E+01 \\ & : 24409 E+01 \\ & .31334 E+01 \\ & .40941 E+01 \\ & .47829 E+01 \end{aligned}$	$.00000 E+00$ $.00000 \mathrm{E}+00$ -00000 Erro $.00000 \mathrm{E}+00$. $00000 \mathrm{E}+00$ - $00000 \mathrm{E}+00$ $.00000 \mathrm{E}+00$ $.00000 \mathrm{E}+00$	$.10000 E \div 01$ -10000E+01 $.10000 E+01$ $-10000 E+01$ $-10000 E+01$ $-10000 \mathrm{E}+01$ $: 10000 \mathrm{E}+01$ - $10000 \mathrm{E}+01$ $.10000 E+01$ $.10000 E+01$	
$\begin{aligned} & \cdot 35215 \mathrm{E}+00 \\ & =36715 \mathrm{E}+00 \\ & 38215 \mathrm{E}+00 \\ & =39715 \mathrm{E}+00 \\ & .41215 \mathrm{E}+00 \\ & .42715 \mathrm{E}+00 \\ & .44215 \mathrm{E}+00 \\ & .45715 \mathrm{E}+00 \\ & .47215 \mathrm{E}+00 \\ & .48715 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & -: 10933 E+01 \\ & -: 10087 E+01 \\ & -: 91707 E+00 \\ & -81983 E+00 \\ & -: 71817 E+00 \\ & -: 01331 E+00 \\ & -.50638 E+00 \\ & -: 39845 E+00 \\ & -: 29054 E+00 \\ & -: 18358 E+00 \end{aligned}$	- $53305 \mathrm{E}+01$ $.58384 \mathrm{E}+01$ - $66436 \mathrm{E}+01$ $.68769 \mathrm{E}+01$ $-70722 \mathrm{E}+01$ - $72053 \mathrm{E}+01$ $.71725 \mathrm{E}+01$ $.70798 \mathrm{E}+01$	$\begin{aligned} & .00000 \mathrm{E}+00 \\ & .00000 \mathrm{E}+00 \\ & .00000 \mathrm{E}+00 \\ & 000000 \mathrm{E}+00 \\ & .00000 \mathrm{E}+00 \\ & .000000 \mathrm{E}+00 \\ & 000000 \mathrm{E}+00 \\ & .000000 \mathrm{E}+00 \\ & .000000 \mathrm{E}+00 \\ & .00000 \end{aligned}$	$.10000 E+07$ $.10000 E+01$ - $10000 \mathrm{E}+01$ $-10000 \mathrm{E}+01$ $.10000 E+01$ $\cdot 10000 E+01$ - $10000 E+01$ $-10000 E+01$ $.10000 E+01$	$\begin{aligned} & \text {-: } 10000 \mathrm{E}+03 \\ & \text {-: } 10000 \mathrm{E}+03 \\ & \text {-: } 10000 \mathrm{E}+\mathrm{O} \\ & \text {-: } 100000 \mathrm{E}+0 \\ & \text {-: } 100000 \mathrm{E}+03 \\ & \text { - } 10000 \mathrm{E}+03 \\ & \text { - } 10000 \mathrm{E}+03 \\ & \text { - } 10000 \mathrm{E}+03 \\ & -10000 \mathrm{E}+03 \end{aligned}$
$\begin{aligned} & .50215 \mathrm{E}+00 \\ & .51715 \mathrm{E}+00 \\ & .53215 \mathrm{E}+00 \\ & .54715 \mathrm{E}+00 \\ & .56215 \mathrm{E}+00 \\ & .57715 \mathrm{E}+00 \\ & .59215 \mathrm{E}+00 \\ & .60715 \mathrm{E}+00 \\ & .62215 \mathrm{E}+00 \\ & .63715 \mathrm{E}+00 \end{aligned}$	$\begin{array}{r} -\quad .78422 \mathrm{E}-01 \\ : 24149 \mathrm{E}-01 \\ \cdot 12343 \mathrm{E}+00 \\ \cdot 218880 \mathrm{~F}+00 \\ \cdot 30972 \mathrm{E}+00 \\ : 395710 \\ : 47640 \mathrm{E}+00 \\ : 55146 \mathrm{E}+00 \\ : 62065 \mathrm{E}+00 \\ : .68380 \mathrm{E}+00 \end{array}$	$.69325 E+01$.67358 ETO $.64749 \mathrm{E}+\mathrm{O}$ $.62152 \mathrm{E}+01$ - $59018 \mathrm{E}+01$ $.55599 E+01$ $-51746 E+01$ $.44128 \mathrm{E}+01$ $.40354 \mathrm{E}+01$	$\begin{aligned} & .00000 \mathrm{E}+00 \\ & : 00000 \mathrm{E}+00 \\ & 00000 \mathrm{E}+00 \\ & .00000 \mathrm{E}+00 \end{aligned}$	$.10000 E+01$ $.10000 E+01$ - $10000 \mathrm{E}+01$ $\cdot 10000 E+01$ $\cdot 10000 \mathrm{E}+01$ - $10000 \mathrm{E}+01$ - $10000 \mathrm{E}+01$ $.10000 E+01$ $\cdot 10000 \mathrm{E} \div 01$ $.10000 \mathrm{E}+01$	$\begin{aligned} & \text {-. } 10000 \mathrm{E}+03 \\ & \text { - } 10000 \mathrm{E}+03 \\ & \text { - } 10000 \mathrm{E}+03 \\ & \text { =: } 10000 \mathrm{E}+03 \\ & \text { - } 100000 \mathrm{E}+03 \\ & \text { - } 10000 \mathrm{E}+03 \\ & -10000 \mathrm{E}+03 \\ & : 10000 \mathrm{E}+03 \\ & : 10000 \mathrm{E}+03 \\ & : 10000 \mathrm{E}+03 \end{aligned}$

[^0]: - FXTS SCPLE - MUUE U.
 Y AXIS SCALE $=2003 E+50$

